Rethinking Feature Discrimination and Polymerization for Large-scale Recognition
نویسندگان
چکیده
Feature matters. How to train a deep network to acquire discriminative features across categories and polymerized features within classes has always been at the core of many computer vision tasks, specially for large-scale recognition systems where test identities are unseen during training and the number of classes could be at million scale. In this paper, we address this problem based on the simple intuition that the cosine distance of features in high-dimensional space should be close enough within one class and far away across categories. To this end, we proposed the congenerous cosine (COCO) algorithm to simultaneously optimize the cosine similarity among data. It inherits the softmax property to make inter-class features discriminative as well as shares the idea of class centroid in metric learning. Unlike previous work where the center is a temporal, statistical variable within one mini-batch during training, the formulated centroid is responsible for clustering inner-class features to enforce them polymerized around the network truncus. COCO is bundled with discriminative training and learned end-to-end with stable convergence. Experiments on five benchmarks have been extensively conducted to verify the effectiveness of our approach on both small-scale classification task and large-scale human recognition problem.
منابع مشابه
Local gradient pattern - A novel feature representation for facial expression recognition
Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...
متن کاملMental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals
Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...
متن کاملدو روش تبدیل ویژگی مبتنی بر الگوریتم های ژنتیک برای کاهش خطای دسته بندی ماشین بردار پشتیبان
Discriminative methods are used for increasing pattern recognition and classification accuracy. These methods can be used as discriminant transformations applied to features or they can be used as discriminative learning algorithms for the classifiers. Usually, discriminative transformations criteria are different from the criteria of discriminant classifiers training or their error. In this ...
متن کاملOverlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery
Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...
متن کاملAnalysis of motor fan radiated sound and vibration waveform by automatic pattern recognition technique using “Mahalanobis distance”
In recent years, as the weight of IT equipment has been reduced, the demand for motor fans for cooling the interior of electronic equipment is on the rise. Sensory test technique by inspectors is the mainstream for quality inspection of motor fans in the field. This sensory test requires a lot of experience to accurately diagnose differences in subtle sounds (sound pressures) of the fans, and t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1710.00870 شماره
صفحات -
تاریخ انتشار 2017